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Abstract

We computationally predict operons in the Synechococcus sp. WH8102 genome based on three
types of genomic data: intergenic distances, COG gene functions and phylogenetic profiles. In the
proposed method, we first estimate a log-likelihood distribution for each type of genomic data,
and then fuse these distribution information by a perceptron to discriminate pairs of genes within
operons (WO pairs) from those across transcription unit borders (TUB pairs). Computational
experiments demonstrated that WO pairs tend to have shorter intergenic distances, a higher prob-
ability being in the same COG functional categories and more similar phylogenetic profiles than
TUB pairs, indicating their powerful capabilities for operon prediction. By testing the method on
236 known operons of Escherichia coli K12, an overall accuracy of 83.8% is obtained by joint learn-
ing from multiple types of genomic data, whereas individual information source yields accuracies
of 80.4%, 74.4%, and 70.6% respectively.

We have applied this new approach, in conjunction with our previous comparative genome
analysis-based approach, to predict 556 (putative) operons in WH8102. All predicted data are
available at (http://www.cs.ucr.edu/~xin/operons.htm) for public use.
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1 Introduction

Operons represent a basic organizational unit of genes in the complex hierarchical structure of bio-
logical processes in a cell of prokaryotes. They are mainly used to facilitate efficient implementation
of transcriptional regulation in microbial genomes [24]. Operons provide highly useful information for
the characterization and construction of biological pathways and networks at a large scale. Therefore,
the prediction of operons at the whole-genome level is one of the most fundamental and challenging
computational problems in microbial functional genomics.

A great amount of research effort has been devoted in the past several years to the investigation of
effective methods for operon prediction, and a number of algorithms have been developed [4, 5, 7, 8,
11, 19, 20, 25, 26]. Through these studies several observations have been made: (i) Intergenic distances
are highly effective in discriminating WO pairs from TUB pairs, among most if not all prokaryotes,
and (ii) Joint learning from heterogeneous characterization information of the genome significantly
improve operon prediction capability. Besides, most of these methods require many experimental data
as input so that they are generally not applicable to newly sequenced genomes.

Recent methodological advances enable us to computationally collect many different types of data
to help the prediction of operon structures in microbial genomes. These data include genes (e.g. by
Glimmer [3]), their functional categories (e.g., by COG [22]), promoters (e.g., by SIGSCAN [15]),
terminators (e.g., by TransTerm [6]), and phylogenetic profiles (e.g., by BLASTp [1]). However, they
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could be erroneous largely due to our current limited understanding of these biological mechinary.
Errors may prevent a single type of data from predicting operon successfully as it was expected.
However, if we assume that errors across different genomic data types are largely independent then joint
learning from them could lead to new insights that might not be as readily available from analyzing
one type of data in isolation, and thus increase the operon prediction accuracies significantly.

Our goal is to devise a compuational method for operon prediction, that can be directly applicable
to recently sequenced genomes that have not been under extensive experimental investigation. This
is very important in practice because putative operons could provide biologists with first insights
as soon as a genome is sequenced and its genes are annotated. As our first attempt towards this
goal, a computational method based on comparative genome analysis has been proposed [5], which
searches for operons conserved in closely related species. Definitely, this method will miss operons
that are unique to the species of interest and not conserved in other species. In order to overcome this
problem, we present in this paper a new compuational method for operon prediction, through fusing
information from three different types of genomic data: intergenic distances, COG gene functions and
phylogenetic profiles. All these genomic data can be computationally obtained, which is an apparent
advantage over many existing methods that make operon prediction by joint learning from multiple
type of experimental genomic data, for example, gene microarray expression data [4, 20], gene function
annotations [19] and metabolic pathways [26].

In the paper, we first provide evidence that intergenic distances, gene functional categories assigned
by COG and phylogenetic profiles calculated from 145 microbial genomes work surprisingly very well
for discriminating WO pairs from TUB pairs. Because the promoters and terminators predicted
by using SIGSCAN [15] and TransTerm [6], respectively, could not provide sufficient discriminating
power [5], they were left out of our genomic dataset for operon prediction. Compared to TUB pairs,
WO pairs tend to have shorter intergenic distances, a higher probability of being in the same COG
functional categories, and having more similar phylogenetic profiles (i.e., co-evolving pattern). Second,
we estimate a log-likelihood distribution for each type of genomic data using 236 known operons that
have been experiementally verified in Escherichia coli. Third, we devise a “knowledge fusion” based
prediction algorithm, which is a perceptron using log-likelihood scores as input. It makes prediction
by fusing knowledge extracted from various sources of genomic data. Tested on the known operons,
the new method consistently outperforms any method which makes prediction by learning from only
a single type of genomic data, in terms of sensitivity, specificity and accuracy (See definition below).
For example, the overall accuracy increases up to 83.8% by joint prediction from 80.4%, 74.4% and
70.6% by prediction based on only one type of genomic data. Finally, we apply the new computational
method to the Synechococcus sp. WH8102 genome and obtain 917 WO pairs, resulting in 537 putative
operons.

In addition, we developed an operon database for the Synechococcus sp. WH8102 genome where
operons came from the prediction by the computational method we proposed here or from the pre-
diction by the comparative genome analysis-based approach in our previous effort [5]. Various experi-
mental evidence that support our prediction, e.g., COG function categories and phylogenetic profiles,
can also be found in the database. This operon database will be very useful to research related to the
Synechococcus sp. WH8102 genome.

2 Methods

2.1 Data Preparation

All the genome sequences and their annotated genes are downloaded from the GenBank database
(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.html). There are totally 145 micro-
bial organisms that were completely sequenced (as of January 11, 2004), and selected for the phyloge-
netic profiling construction. They are also listed on our website (http://www.cs.ucr.edu/~xinchen/
operons.htm). We choose two specific microbes, Escherichia coli K12 (GenBank accession number
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NC 000913) and Synechococcus sp. WH8102 (GenBank accession number NC 005070), to present our
experimental results.

In the RegulonDB database [21], there are 237 known operons of E. coli that are experimentally
verified. However, because there are some genes that have been removed from the latest annotation of
E. coli, only 236 operons are actually left for our experiments. These operons include 568 WO pairs
(i.e., adjacent genes within operons, and 463 TUB pairs (i.e., adjacent genes across the borders of
operons).

Since two genes of a WO pair must be on the same DNA strand with no intervening gene in the
complementary strand, we evaluate only adjacent pairs having the same transcritional direction in our
predictive algorithm, and two adjacent genes will be simply classified as a TUB pair if they are in the
opposite strands of a genome.

2.2 Performance Measurement
A common way to measure the performance of a predictive approach is to estimate an accuracy score
from a test dataset. The accuracy, which follows the definition given in [11], is the average of sensitivity
and specificity, where sensitivity is the fraction of true positives detected in the total known WO pairs
(568 pairs in our experiments) and specificity is the fraction of true negatives in the total known TUB
pairs (463 pairs).

2.3 Log-Likelihoods
What we can observe usually is the properties of an object, but we may not know exactly what it is.
Therefore, a typical prediction problem is how to identify an object given its observed properties. For
example, an operon prediction problem is to determine whether two adjacent genes belong to a same
operon if we only know their genomic sequence locations. Using probability measurements, this can
then be formulated as a problem to calculate a posterior probability, P (WO|(ga, gb)), where ga and
gb are the property values observed for two adjacent genes of interest. By Bayesian theorem, we have

P (WO|(ga, gb)) =
P ((ga, gb)|WO)

P ((ga, gb))
P (WO)

where P ((ga, gb)|WO) is the probability that a specific property value (ga, gb) could be observed given a
WO gene pair, P ((ga, gb)) is an unconditional version of P ((ga, gb)|WO), i.e., the marginal probability
that a specific property value could be observed from a randomly selected gene pair which may or
may not be in an same operon, and P (WO) is the probability that a gene pair is expected to be in
an operon without any prior information, which in general is set to be constant in a typical prediction
problem.

In most real applications, however, it seems highly problematic to make an accurate statistical
measurement for P (WO|(ga, gb)) because we may observe a huge amount of property instances while
only a small amount of training data is available. To deal with this problem, we first try to de-
fine a distance measure between two property values d(ga, gb) (e.g., intergenic distance between two
genes or Hamming distance between two binary vectors of phylogenetic profiles) and then calculate
P (WO|d(ga, gb)) instead of P (WO|(ga, gb)). This may dramatically reduce the number of instances for
the estimation of posterior probability. Actually, P (WO|d(ga, gb)) could be equal to P (WO|(ga, gb))
if we assume any pair of (ga, gb) at a same distance has the same probability being a true WO pair.
In order to achieve a good prediction performance, a distance measure to be defined should reflect a
simple intuition that a shorter distance implies a higher probability of a gene pair belonging to the
same operon.

For most typical prediction problems, there are only two exclusive outputs, i.e., the input object
is or is not the one we are interested in. For example, a pair of genes is either a WO pair or a TUB
pair exclusively. It thus follows that

P (d(ga, gb)) = P (d(ga, gb)|WO)P (WO) + P (d(ga, gb)|TUB)P (TUB)
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Figure 1: Frequency distribution of intergenetic
distances between adjacent gene pairs.
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Figure 2: Log-likelihoods for intergentic dis-
tances between adjacent gene pairs.

Assuming that P (WO) is a constant (as it is in many real applications), we can see that the ratio of
P (d(ga, gb)|WO) against P (d(ga, gb)|TUB) reflects the same relationship among gene pairs at different
distances as the posterior probability value of P (WO|d(ga, gb)) does. In other words, the ratio strictly
increases as the probability increases. This ratio is commonly called a likelihood score, and a logarithm
likelihood score is then defined as follows:

LL(WO|d(ga, gb)) = log
P (d(ga, gb)|WO)
P (d(ga, gb)|TUB)

Therefore, the higher a log-likelihood score is the more likely two genes form a WO pair.

2.4 Log-Likelihoods from Intergenic Distances

The distance between two adjacent genes on the same strand of DNA tends to be shorter if they
belong to the same operon. This characterization has been observed by many researchers [19, 11].
Experimental evidence was also given that this method is applicable to most if not all prokaryotic
genomes, indicating short distance tendency between adjacent pairs is one of universal structure
features of operons.

The intergenetic distance is calculated as the number of bases between the two closest end points of
two genes in the genomic sequences. We estimated intergenetic distance frequencies of known WO pairs
and of known TUB pairs, and then calculated their log-likelihood scores using the formula described
above. Experimental results are depicted in Fig. 1 which plots the intergenic distance frequencies,
and in Fig. 2 which plots their log-likelihood scores. As demonstrated in [21], the two most frequent
distances are −4bp and −1bp (i.e., two genes overlap by 4 bases or 1 base).

2.5 Log-Likelihoods from COG Functions

Genes in an operon are involved in a specific functional process or pathway. These genes, therefore,
are expected to share the same functional category. Salgado et al. [19] has demonstrated this by
analyzing the functional classes of Monica Riley [18], which were experimentally annotated for the
genes examined. Instead, we took a computational method where a putative gene was assigned a
COG function category by the COGnitor program from http://www.ncbi.nlm.nih.gov/COG/, and
then estimated its discrimination power to WO pairs against TUB pairs.

The COGs (i.e., clusters of orthologous groups, each of which consists of individual orthologous
genes or orthologous sets of paralogs from at least three lineages) comprise a framework for the analysis
of evolutionary and functional relationships among homologous genes from multiple genomes [22].
There are three major levels in the COG function hierarchy. The first level, for example, consists of
four categories: (1) Information storage and processing, (2) Cellular processes, (3) Metabolism, and (4)
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Poorly characterized. Because COGnitor may fail to assign some new genes to a functional category
or to the poorly characterized category, pairs involving such genes will be ignored in the subsequent
statistics calculation and simply assigned a likelihood score of zero. As our previous experiments have
shown [5], two genes of a WO pair are more likely to share the same COG functional category than
those of a TUB pair. For example, there are a total of 79.5% (272 out of 342) of the known WO pairs
sharing the same COG second-level functional category. As a comparison, only 31.0% (50 out of 161)
of the known TUB pairs share the same second-level category.

We further found that the probability that two adjacent genes share a same COG second-level
functional category varies as different first-level functional categories are examined. This then results
in unequal log-likelihood scores calculated for adjacent gene pairs in the different first-level functional
categories, as shown in Table 1. In particular, two genes that are predicted in the COG functional
category Metabolism are more likely to be a WO pair than those in the category Information storage
and processing or Cellular processes.

Table 1: Frequencies of adjacent pairs in COG functional categories and their log-likelihood scores.
COG functional categories % WO pairs % TUB pairs Log-likelihoods
Information storage and processing 0.143 0.074 0.942
Cellular processes 0.187 0.093 1.006
Metabolism 0.464 0.142 1.702
Different characterized categories 0.204 0.689 -1.75

2.6 Log-Likelihoods from Phylogenetic Profiles

2.6.1 Phylogenetic Profiles

The phylogenetic profile [16] of a gene is a binary string, each bit of which represents the presence or
absence of the gene in the genome of an organism. Phylogenetic profiles have been demonstrated in
various applications to be a powerful source of information for assigning gene function and inferring
protein interaction in comparative genomics [9, 10, 12, 13]. Its basic assumption from the biological
aspect is that proteins functioning together in a pathway or structural complex are likely to evolve
in a correlated fashion. Compared to traditional homology-based methods, an apparent advantage of
the new method is that pairs of functionally linked genes inferred do not necessarily have amino acid
sequence similarity with each other.

Instead of a binary value representing the homologous presence or absence of a protein in an
organism, Marcotte [12] proposed to use a fractional number ranging from zero to one as an entry
of the vector representing a phylogenetic profile. This number, calculated based on E-values from
BLASTp program, reflects the sequence similarity level between a pair of homologous genes. The
advantage of this formulation over the original one is unknown, because no experimental comparison
between them has been reported in the literature.

A variant of phylogenetic profiles is inverse phylogenetic profiles, i.e., a profile where ones have
been replaced by zeros and vice versa [10]. A convergent evolution is expected to be found in genes
that perform redundant functions but lack a common evolutionary origin. This will involve genes
that perform the same biological function, but are not homologs or may not even perform the same
biochemical function. Such genes could possibly be detected by computing an inverse phylogenetic
profile with a phylogenetic profile. In general, the existence of an inverse profile that is the same
or similar to a profile should imply either functional similarity or alternatively mutually exclusive
functionalities [10].

2.6.2 Previous Distance Measurements

A basic issue arising in any computational analysis of phylogenetic profiles is how to measure the
distance between two profiles. In principle, distance values to be calculated should reflect functional
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relevance of two proteins as more accurately as possible. Undoubtedly, this is not a trivial job. In the
following, we briefly summarize several distance measurements we found in the literature.

Hamming distance: The Hamming distance was proposed as early as the concept of phylogenetic
profile was first introduced [16]. It simply counts the number of bits that differ between two profile
strings.

Differential parsimony: The next distance measure, which was introduced in [10], calculates a
differential parsimony in the historical evolution of two genes based on their phylogenetic profiles. It
requires the phylogenetic reconstruction of the ancestral proteins and the comparison of the recon-
sructed trees. Compared to Hamming distance, this distance measure is evolutionarily relevant, and
thus more biologically meaningful.

Tree kernel: With a powerful mathematical framework embedded, a tree kernel is proposed to
analyze phylogenetic profiles [23]. By defining a tree kernel, i.e., an inner product function in the
high-dimensional feature space mapped from the phylogenetic profiles, a distance measure is then
defined in an implicit way. Kernel methods work implicitly in the feature space using only the kernel
function, for which existing diverse algorithms such as Support Vector Machines for classification or
regression, kernel principle component analysis, kernel clustering or kernel Fisher discriminants can
directly be applied to the defined tree kernel [23].

2.6.3 Entropy-Based Distance

We observe that the distribution pattern of 0-1 identities between two phylogenetic profiles could make
a difference in the inference of the co-evolving relationship of two genes. For example, there are many
genes that exist in all organisms or may not exist in any organism examined, and their profiles are
all ones or zeros, respectively. Intuitively, these genes are impossible to be functionally related, but a
small distance value would be obtained if we use any of the above distance definitions (i.e., Hamming
distance, differential parsimony or the tree kernel). If the bit identities involving 0’s and 1’s between
two profiles are normally distributed over all the organisms then we could perhaps expect more on a
co-evolving pattern and functional association.

In order to address this issue, the new distance measure proposed in this paper is an extension
of Hamming distance by taking into account the distribution pattern of 0-1 identities between two
profiles. Since identities involving only 0’s or only 1’s suggest the least co-evolving possibilities between
two genes but that involving the same number of 0’s and 1’s suggest the highest, we propose a new
distance measure dE as follows:

dE = L − (L − dH)
√

E(p)

where dH is the Hamming distance between two profiles, L is the length of a binary string profile
(i.e., the number of genomes examined), and p is the percentage of identities involving 0’s among in
all the identities and E(p) is its Shannon entropy, i.e., E(p) = −plog(p) − (1 − p)log(1 − p). We can
see that, dE becomes the Hamming distance measure when E(p) is set to be 1, which means that an
equal weight is assigned to any distribution pattern of 0-1 identities. The square root is employed here
in order to widen the curve plotted by the entropy function E(p), and to produce a slightly higher
prediction accuracy than using the measure without a square root.

We conducted experiments to compare the entropy-based distance with Hamming distance. The
entropy-based distance performs superior to Hamming distance when applied to operon prediction,
in terms of prediction accuracies estimated on known WO pairs and known TUB pairs. Figure 3
shows that the new entropy-based distance can increase the maximal accuracy from 0.670 (as given by
Hamming distance) to 0.713. As we mentioned earlier, prediction accuracy reflects a distance measure’s
capability to discriminate WO pairs from TUB pairs. The frequency distributions of Hamming distance
and the entropy-based distance for adjacent (WO or TUB) pairs of genes, as well as their log-likelihood
scores, are depicted in Figure 4.
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Figure 3: Accuracy comparison at different sensitivities between Hamming distance and entropy-based
distance.

2.7 Predicting Operons from Multiple Types of Data

In many typical prediction problems in bioinformatics, what we could know about an object is various
disparate types of property information associated with it. It may be easy to make a prediction based
on only one type of data. However, a problem is arising if we want to make a prediction based on a
heterogeneous data set, i.e., how to integrate disparate types of information data so as to improve the
prediction capability. For example, we can make operon prediction by joint learning from three types
of characterization information described above – intergenic distances, COG functional categories and
phylogenetic profiles. They are completely disparate because an intergenic distance is measured by
the number of nucleitide bases separating two genes (which could be negative if the genomic sequences
of two genes overlap), a COG functional category is labelled by a symbol, and phylogenetic profiles
are encoded as binary vectors.

Prediction/classification based on multiple types of information actually is a research focus in the
field of information fushion, which mainly develops techniques exploiting information dependences for
better prediction performance. We choose a simple but powerful tool, perceptron, to implement our
operon prediction task.

2.7.1 Perceptron
A perceptron is a single-layer network with threshold activation functions [2]. The perceptron we use
for operon prediction has three input values, each corresponding to a log-likelihood score calculated
from a type of genomic data, and its linear discriminant function is

y(LL) = wT · LL + b

where w is the weight vector, b is the bias (its negative is sometimes called a threshold) and LL is
a vector with three components, i.e., LLi, i = 1, 2, 3. The output unit activation function is most
conveniently chosen to be an anti-symmetric version of the threshold activation function of the form

g(a) =

{
−1 when a < 0
+1 when a ≥ 0

That is, the two input genes are identified as a WO pair if g(y(LL)) is given +1, or a TUB pair if
otherwise.

A perceptron must be trained to assign proper values to its weights and bias so as to produce
an effective prediction system. In order to achieve this goal, it would be natural to define the error
function in terms of the total number of misclassifications over a training data set, since the data set
is usually not linearly separable in practice. Unfortunately, this error function seems very difficult to
use in an efficient optimization algorithm, because it is a piecewise-constant function so that many
optimization procedure akin to gradient descent cannot be applied [2].
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Figure 4: Frequency distribution and log-likelihood distribution of distances between two phyloge-
netic profiles of adjacent genes when Hamming distance and entropy-based distance are employed,
respectively.

An alternative error function that is widely used is a continuous, piecewise-linear one called the
perceptron criterion, which tries to minimize the Mean Absolute Error (mae)

Eperc(w) =
∑

LL∈M

|y(LL)|

where M is the set of vectors LL that are misclassified by the current weight vector w. We can see
that Eperc(w) is proportional to the sum, over all of the input patterns that are misclassified, of the
(absolute) distances to the decision boundary. The perceptron criterion is therefore continuous and
piecewise linear with discontinuities in its gradient.

We have implemented the above perceptron in Matlab and chosen the Levenberg-Marquardt algo-
rithm as its training function.

2.7.2 Diagram of Operon Prediction
A diagram of our operon prediction system is depicted in Figure 6. The prediction procedure begins
with two genes of interest as input, and then computationally identifies each gene with three types of
genomic data. In the next step, we estimate the distance between two adjacent genes for each data
type, and calculate a corresponding log-likelihood score based on known operon data. Finally, three
log-likelihood scores serve as inputs to a perceptron. We use known operons once more to train the
perceptron to assign proper values to its weights and bias so that it could produce an effective operon
prediction system.

A popular approach to joint learning from multiple types of data is the kernel method in which
multiple types of data are directly input into a support vector machine learning algorithm [17]. In
constrast, our operon prediction system employs a two-phase training procedure. The first phase
that estimates log-likelihood scores corresponds to exploring information correlations within one type
of data, whereas the second phase that estimates the perceptron weights and bias corresponds to
exploring information correlation between different types. Therefore, the heterogeneous data is not
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Figure 6: Diagram of our operon prediction sys-
tem.

input to the perceptron directly. This could dramatically reduce the number of instances for the
estimation of posterior probabilities. In addition, each training phase takes only one type of data as
input, e.g., log-likelihood scores in the second training phase.

3 Experimental Results

The log-likelihood feature vectors of 568 known WO pairs and 463 TUB pairs, each consisting of three
log-likelihood scores estimated from intergenic distance, COG gene function and phylogenetic profile
respectively, are plotted in Figure 5. We can see that the cluster of WO pairs separates very well with
that of TUB pairs in the log-likelihood feature space, indicating the effectiveness of our method.

We use these feature vectors as input to train the perceptron, which explores prior knowledge of
heterogeneity by assigning each data type a different weight. The resulted weights and bias are listed
in Table 2, i.e., wT = (1.0421 0.5138 0.5892) and b = 0.1759. We can see that intergenic distance was
assigned a weight as almost twice as that of COG gene function or phylogenetic profile, showing that
intergenic distance is the most importance feature among the three we examined.

Table 2: Weights and bias of the perceptron.
Intergenic distance COG function Phylogenetic profile bias

Weights 1.0421 0.5138 0.5892 0.1759

We run 10-fold cross-validation experiments with those known WO and TUB pairs, and estimate
the sensitivities, specificities and accuracies of five operon prediction methods, including three methods
based on each individual type of genomic data and two joint prediction methods with equal weights or
weights assigned by training a perceptron. The results are shown in Table 3. Our prediction method
employing a perceptron achieves the highest accuracy up to 83.8%, and consistently performs better
than any prediction method based on only a single data type in terms of sensitivity, specificity and
accuracy. The experimental results also show that log-likelihoods derived from intergenic distances
contribute most of the discrimination power to the joint prediction method, as its assigned weight
showed in the above. Compared with joint prediction with a perceptron, joint prediction using equal
weights yields a slightly higher specificity, but it reduces the sensitivity much more so that its overall
accuracy is still lower than that of the method employing a perceptron.

After the initial validation study, we applied our method to a newly sequenced microbial genome,
Synechococcus sp. WH8102 [14], which is the focus of an ongoing US DoE GtL project (http:
//www.genomes2life.org/). This results in a total of 917 putative WO pairs, which then forms 537
putative operons consisting of 1454 genes in Synechococcus sp. WH8102. Note that the average size of
these putative operons (i.e., the average number of genes in each operon) is 2.71, which is very close
to the statistics reported in [26].
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Table 3: Sensitivity, specificity and accuracy of operon prediction.
Predictor Sensitivity Specificity Accuracy
Intergenic distance 0.778 0.829 0.804
COG function 0.798 0.689 0.744
Phylogenetic profile 0.570 0.842 0.706
Joint prediction with equal weights 0.805 0.853 0.829
Joint prediction with a perceptron 0.824 0.851 0.838
Prediction by comparative analysis 0.829 0.721 0.775

Previously, we proposed a comparative genome analysis-based approach to predict operons in
WH8102 that are conserved in closely related species, i.e., Prochlorococcus marinus sp. MED4 and
Prochlorococcus marinus sp. MIT9313 in our experiments [5], yielding an accuracy of 77.5%. It will
miss operons unique to WH8102, while the new method presented here may miss some true operons
with low log-likelihood scores. For example, the well-known carboxysome (SYNW1712, 1713, 1714,
1715, 1716, 1717, 1718, 1719) can be exactly found by the comparative approach but only partly by
the new method. On the other hand, an ABC transporter operon (SYNW1915, 1916, 1917) can be
exactly found by the new method but is missed by the comparative method. Therefore, we can see
that these two computational methods can complement each other in operon prediction.

We further looked at 19 ABC transporter operons, a major family of transporters in WH8102.
Their individual genes were identified as in [14] and collected manually into operons. Our new method
was able to predict 10 of them exactly and did not miss any operon completely, better than the
comparative approach which predicted only 8 operons exactly and missed 2, as shown in Table 4.

Table 4: The ABC transporter operons and our prediction results.
ABC transporter operon Prediction by comparative genome analysis Our prediction results
(SYNW0211, 0212) Exactly found Exactly found
(SYNW0319, 0320, 0321) (SYNW0319, 0320, 0321, 0322) (SYNW0318, 0319); (SYNW0320, 0321, 0322)
(SYNW0708, 0709) Exactly found (SYNW0708, 0709, 0710, 0711)
(SYNW0840,0841, 0842, 0843) (SYNW0840,0841); (SYNW0842, 0843) Exactly found
(SYNW0969, 0970) Exactly found Exactly found
(SYNW1086, 1087) (SYNW1084, 1085, 1086, 1087) (SYNW1084, 1085, 1086, 1087)
(SYNW1111, 1112) (SYNW1109, 1110, 1111, 1112, 1113, 1114) (SYNW1109, 1110, 1111, 1112, 1113)
(SYNW1168, 1169, 1170) (SYNW1167, 1168); (SYNW1170, 1171) (SYNW1166, 1167, 1168); (SYNW1169, 1170, 1171)
(SYNW1270, 1271, 1272) Exactly found Exactly found
(SYNW1283, 1284, 1285) (SYNW1282, 1283, 1284, 1285) (SYNW1281, 1282, 1283, 1284, 1285)
(SYNW1340, 1341) Exactly found Exactly found
(SYNW1415, 1416, 1417) Not found (SYNW1412, 1413, 1415, 1416, 1417, 1418)
(SYNW1797, 1798) Not found Exactly found
(SYNW1857, 1858) (SYNW1857, 1858, 1859, 1860) (SYNW1855, 1856, 1857, 1858, 1859, 1860)
(SYNW1915, 1916, 1917) Exactly found Exactly found
(SYNW2393, 2394, 2395) Exactly found (SYNW2393, 2394, 2395, 2396)
(SYNW2438, 2439, 2440, 2441, 2442) (SYNW2438, 2439, 2440, 2441, 2442, 2443) Exactly found
(SYNW2479, 2480, 2481) (SYNW2479, 2480) Exactly found
(SYNW2485, 2486, 2487) Exactly found Exactly found

In order to take advantege of the two computational methods, we incorporated all WO pairs
predicted by either method together, resulting in 1108 WO pairs and 556 operons in WH8102. Among
these WO pairs, 482 pairs were predicted by both methods, 191 pairs by the comparative method
only and the other 435 pairs by the new method only. We have also developed an operon database
for WH8102 where the user can find all putative operons and their supporting evidence such as COG
gene functions and phylogenetic profiles. The database is at http://www.cs.ucr.edu/~xinchen/
operons.htm.

4 Discussion

We compuatationally predicted operons in the Synechococcus sp. WH8102 genome based on three
disparate types of genomic data: intergenic distance, COG gene function and phylogenetic profile. All
these supporting data can be compuatationally obtained so that the proposed method is applicable
to recently sequenced genomes that have not been under extensive experimental investigation. We
demonstrated that WO pairs tend to have shorter intergenic distances, a higher probability of having
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the same COG functional categories and more similar phylogenetic profiles than TUB pairs. Therefore,
these structural features are very useful for the challenging operon prediction task.

We estimated a log-likehood distribution for each type of genomic data. For COG gene function, the
log-likelihood scores vary as different first-level functional categories are examined. For phylogenetic
profiles, we proposed an entropy-based distance by taking into account the distribution pattern of
0-1 identities, which is superior to Hamming distance when applied to operon prediction, in terms of
prediction accuracies.

We devised an operon prediction system, which makes prediction by joint learning from multiple
types of genomic data. It integrates two phases of training to explore information correlations within
one type of data and information correlation between different types, respectively. We believe that
this could be a technique with wide applications in the field of computational biology.
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