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Abstract

We present a computational method for prediction of functional modules that can be directly
applied to the newly sequenced microbial genomes for predicting gene functions and the component
genes of biological pathways. We first quantify the functional relatedness among genes based on
their distribution (i.e., their existences and orders) across multiple microbial genomes, and obtain
a gene network in which every pair of genes is associated with a score representing their functional
relatedness. We then apply a threshold-based clustering algorithm to this gene network, and
obtain modules for each of which the number of genes is bounded from above by a pre-specified
value and the component genes are more strongly functionally related to each other than genes
across the predicted modules. Particularly, when the module size is bounded by 130, we obtain
167 functional modules covering 813 genes for Escherichia coli K12, and 138 functional modules
covering 731 genes for Bacillus subtilis subsp. subtilis str. 168. We have used the gene ontology
(GO) information to assess the prediction results. The GO similarities among the genes of the
same functional module are compared with the GO similarities among the genes that are randomly
clustered together. This comparison reveals that our predicted functional modules are statistically
and biologically significant, and the genes of the same functional module share more commonality
in terms of biological process than in terms of molecular function or cellular component. We have
also examined the predicted functional modules that are common to both Escherichia coli K12 and
Bacillus subtilis subsp. subtilis str. 168, and provide explanations for some functional modules.
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1 Introduction

The wealth of genomic sequence data generated through the worldwide sequencing efforts of micro-
bial genomes [http://www.sanger.ac.uk/Projects/Microbes/, http://www.tigr.org/tdb/mdb/
mdbcomplete.html, http://microbialgenome.org, http://www.ncbi.nlm.nih.gov/genomes/MICR
OBES/Complete.html] have provided unprecedented opportunities for computational biologists to un-
veil the enormous amount of hidden information encoded in the genomes about the biological ma-
chinery of these micro-organisms. As we understand now, each of the complex biological processes in
a microbial cell is carried out through interactions of multiple functional modules at various levels.
These functional modules are made of interacting bio-molecules and serve as the basic building blocks
of the complex biological machinery in a microbial cell. In general, functional modules at different
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levels are made of combinations of operons, regulons, modulons and stimulons, many of which might
have conserved components and structures across multiple microbial organisms [7, 16, 20, 24].

In our previous study [23], we have used comparative genome analysis and gene ontology (GO)
information to predict functional modules in microbial genomes, and have observed that the neigh-
borhood profiles alone can provide sufficient information for accurate prediction. So, in this paper, we
present a new computational method for the prediction of functional modules in microbial organisms
solely based on genes’ neighborhood profiles. More specifically, we (1) propose a probabilistic model
for a single gene’s neighborhood profile (including its existence and order in a given set of microbial
genomes); (2) compute the likelihood of any two genes’ neighborhood profiles to represent their func-
tional relatedness; and (3) design a clustering algorithm to obtain modules of strongly functionally
related genes from the network where every pair of genes has a certain degree of functional related-
ness. The focus of this paper is on the identification of genes involved in a functional module rather
than the detailed interaction relationships among these genes. This study provides a basis for further
prediction of detailed gene functions and biological (metabolic, signaling and regulatory) networks.

Our method is rationalized by the fact that neighboring genes in prokaryotic genomes are likely
to be functionally related (as evidenced by the operon structures). The idea of identifying genes that
are consistently close to each other in multiple genome has been an effective approach for predicting
genes’ functional relatedness, and has been used for the prediction of operons [3, 5, 22], gene-teams (or
Über-operons) [8, 12, 13, 17] etc. Different than these approaches, we assess the functional relatedness
for each pair of genes based on a probabilistic model developed for their neighborhood profiles. In
this way all genes in a genome form a network in which every pair of genes are associated with a
score representing their functional relatedness1. Though it is only used for the prediction of functional
modules in this paper, this gene network contains much more information to be further explored.
For example, when viewed at different resolution levels, this gene network exhibits different levels of
modularity of the biological machinery in a microbial cell.

The rest of this paper is organized as follows. We describe the materials and methods in Section 2.
The experiments, results and discussions are provided in Section 3. Section 4 summarizes the work.

2 Materials and Methods

2.1 Query and Reference Genomes

Supplementary Table 1 summarizes the taxonomy lineages of the 224 microbial genomes used in our
study that belong to 175 different species (note that some species may have more than one strains).
Let G0 denote the query genome for which the functional modules are to be predicted. When choosing
the reference genomes, Gk (k = 1, · · · ,K), to establish the neighborhood profiles for the genes of G0,
we remove the redundant information, which is reflected as the multiple genomes of the same species,
by (1) not choosing the genomes belonging to the same species as G0 and (2) only choosing one genome
per species.

2.2 Orthologous Gene Detection

Let N0 be the total number of genes, and gi be the i-th (i = 1, · · · , N0) gene of G0. We use the
bi-directional best-hit (BDBH) method to search for the orthologous genes of gi in reference genomes.

Though the BDBH method has certain limitations (e.g., it may fail for both phylogenetically
very close and very distant genomes), it has long been used for orthologous gene prediction. In our
previous study, we have used both the BDBH method and the reciprocal smallest distance algorithm
(which is an improved version of the BDBH method utilizing both sequence alignment and evolutionary

1The probability model used for computing the likelihood of any two genes’ neighborhood profiles is slightly different
than that of [23] due to the introduction of the concept of directon, as detailed in Section 2.
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distances) [21] for the detection of orthologous genes, based on which we have then predicted functional
modules for Escherichia coli K12. These two methods have been shown to lead to similar results [23].
So, in this paper we only use the BDBH method; and we do not distinguish between gi and its
orthologous genes throughout the rest of the paper.

2.3 Neighborhood Profile of One Gene

The neighborhood profile of a gene gi consists of K = 175 in our study entries, each of which represents
one reference genome and includes the following information: (1) presence or absence of gi in the
reference genome and (2) the order of gi in the reference genome if it exists.

The neighborhood profile of gi can be viewed as an observation of a random process that governs
the distribution of gi across different genomes. We make the following assumptions about this random
process:

• A gene’s behavior (i.e., presence and order) is independent among different reference genomes.
Equivalently, the entries of the neighborhood profile of gi are independent of each other.

• A gene gi is present in a reference genome Gk with a probability pik, and pik is the same among
the reference genomes that belong to the same phylum. This means that pik can be estimated
by using the maximum likelihood estimation method as:

pik =
number of genomes having gi in the phylum Gk belongs to

total number of genomes in the phylum Gk belongs to

• If gi is present in Gk, then it can be located anywhere in Gk with equal probability. Let L be
the number of directons (A directon consists of genes transcribed in the same direction with no
intervening gene transcribed in the opposite direction [14]) of Gk, Nk1, · · · , NkL be the numbers
of genes in the L directons, respectively, and Nk ≡

∑L
l=1 Nkl be the total number of genes of Gk.

The probability of gi belonging to the L-th directon is pikNkl/Nk, and the probability of gi at a
particular position is pik/Nk.

One may consider a more sophisticated model for the distributions of genes across different
genomes, for instance, by taking into account of the lengths (in terms of base pairs) of directons
and genes. However, as detailed below, since our method relies more on the model for each pair of
genes than for each single gene, this simple model about the single gene’s distribution is adequate to
provide sufficient information for the assessment of functional relatedness between any pair of genes.

2.4 Neighborhood Profiles of a Pair of Genes

Now consider two genes gi and gj . There are five possible cases for their presence and orders in any
reference genome Gk:

Case 1. (ḡi, ḡj , Gk): neither gi nor gj is present in Gk.
Case 2. (gi, ḡj , Gk): only gi is present in Gkbut gj is not.
Case 3. (ḡi, gj , Gk): only gj is present in Gk but gi is not.
Case 4. (gi, gj , |gi−gj | = d,Gk): both gi and gj are present in Gk, and belong to the same directon

with a distance of d genes.
Case 5. (gi, gj , NA,Gk): both gi and gj are present in Gk, but do not belong to the same directon.
If gi and gj are not functionally related to each other in any way, then their distributions in any

reference genome Gk can be viewed as independent, and therefore the probability for the above five
cases2 can be computed as:

2Strictly speaking, instead of computing the probability of Case 4, we actually compute the probability that gi and
gj are present in the same directon of Gk with a distance no more than d genes.
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Case 1. the probability that neither gi nor gj is present in Gk can be computed as:

P (ḡi, ḡj , Gk) = (1− pik)(1− pjk)

Case 2. the probability that only gi is present in Gk but gj is not can be computed as:

P (gi, ḡj , Gk) = pik(1− pjk)

Case 3. the probability that only gj is present in Gk but gi is not can be computed as:

P (ḡi, gj , Gk) = (1− pik)pjk

Case 4. the probability that both gi and gj are present in Gk, and belong to the same directon
with a distance no more than d genes can be computed as follow:

P (gi, gj , |gi − gj | ≤ d,Gk) = pikpjk

L∑

l=1

(Nkl

Nk

)2
min

{Nkl + (2Nkl − 1)d− d2

N2
kl

, 1
}

Case 5. the probability that both gi and gj are present in Gk, but do not belong to the same
directon can be computed as:

P (gi, gj , NA, Gk) = pikpjk

(
1−

L∑

l=1

(Nkl

Nk

)2)

When all reference genomes are considered together, the log-likelihood of the neighborhood profiles
of gi and gj , L(gi, gj), which supports the hypothesis that gi and gj are not functionally related, is
computed as:

L(gi, gj) =
K∑

k=1

{I(ḡi, ḡj , Gk) log P (ḡi, ḡj , Gk) + I(gi, ḡj , Gk) log P (gi, ḡj , Gk)

+ I(ḡi, gj , Gk) log P (ḡi, gj , Gk) + I(gi, gj , NA, Gk) log P (gi, gj , NA, Gk)

+ I(gi, gj , |gi − gj | ≤ dij
k , Gk) log P (gi, gj , |gi − gj | ≤ dij

k , Gk)},

where I( · ) is an indicator, which is 1 if and only if the criteria within the parentheses are met, and
dij

k is the observed distance between gi and gj in Gk. The larger L(gi, gj) is, the more supportive
the neighborhood profiles of gi and gj are for this hypothesis; and the smaller L(gi, gj) is, the more
supportive the neighborhood profiles of gi and gj are for the alternative hypothesis, which is that gi

and gj are functionally related. So, in the rest of this paper, we use S(gi, gj) = −L(gi, gj) to denote
the score for the functional relatedness between gi and gj .

2.5 Clustering Algorithm

Every pair of genes gi and gj in the query genome G0 has a score S(gi, gj) measuring their functional
relatedness, as defined above. The query genome G0 can now be viewed as a graph, where nodes
represent genes and edges with weights S(gi, gj) represent the functional relatedness between the
corresponding genes. This graph of functional relatedness can be interpreted at different levels. At
the coarsest resolution level, all genes are functionally related so that they together are responsible
for all activities of a cell. At a finer resolution level, genes with stronger functional relatedness stand
out and form smaller and strongly interacted modules that are responsible for specific activities of a
cell. At the finest resolution level, each gene forms a functional module by itself.

To predict biologically meaningful functional modules of smaller sizes, we apply a simple threshold-
based method to partition the graph into intra-connected clusters. The principle behind this algorithm
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Clustering Algorithm (MaxSize, initial value of α)
Initialization

There is only one module C consisting of all genes
If |C| ≥ MaxSize (|C| is the number of genes in C)

C is added into the temporary module collection Ctemp

Else
C is added into the final module collection Cfinal

End if
Loop until Ctemp is empty

Take one module C out of Ctemp

Loop for each gene gi in C
Compute µi and σi of S(gi, gj) between gi and all the other genes gj in C

End loop
Loop for every two genes gi and gj in C

Keep the connection between gi and gj if and only if S(gi, gj) stands out
End loop
Loop for each newly generated module C ′

If |C ′| ≥ MaxSize
C ′ is added into the temporary collection Ctemp

Else
C ′ is added into the final collection Cfinal

End if
End loop
α is increased by ∆α

End loop

Figure 1: Pseudo-code of the clustering algorithm.

is that two genes being clustered together at a particular resolution level will be further clustered
together at a finer resolution level if and only if their functional relatedness stands out (compared to
the functional relatedness of other gene pairs) in the current module. More specifically, let µi and σi

be the mean and standard deviation of the functional relatedness between gi and all the other genes
of the same module at the current resolution level, then S(gi, gj) is considered to stand out in the
current module if and only if S(gi, gj) ≥ µi + ασi and S(gi, gj) ≥ µj + ασj being a threshold. In our
clustering algorithm,

• each module corresponds to a connected (sub-)graph.

• the initial value of α is provided to the algorithm by the user.

• a module will be stopped from further decomposition if the number of its genes is no greater
than a pre-specified value MaxSize; otherwise, it will be further decomposed after the current
value of α is increased by a small amount ∆α(= 0.05 in our study).

Our clustering algorithm is depicted in Figure 1.
When MaxSize is set as 1, all the functional modules obtained throughout this clustering process,

including all of those belonging to Cfinal or any Ctemp during the process, form a tree, wherein (1) a
node corresponds to a module, (2) the root module consists of all the genes in G0, (3) each leaf module
consists of a single gene, (4) the modules at the same level are associated with the same value of α, (5)
a module contains only a subset of the genes that belong to its parent module, and (6) two modules
do not share any common genes if they are not ancestor-descendent. This tree structure of functional
modules is solely determined by the initial value of α and the strategy that α is varied during the
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clustering process (α is linearly increased in our study). This tree reflects the hierarchical structure of
our functional module. Given a particular value of MaxSize (other than 1), the final collection Cfinal

contains those modules with size no greater than MaxSize that are first encountered while traversing the
tree from the root to leaves. Generally, different values of MaxSize correspond to viewing the functional
modules at different resolution levels. Given two values of MaxSize, MaxSize1 ≤ MaxSize2, each of
the modules obtained at MaxSize1 must be the descendent of some module obtained at MaxSize2.
Therefore, a larger value of MaxSize can be interpreted to correspond to a coarser resolution level.

Through the experiments where Escherichia coli K12 and Bacillus subtilis subsp. subtilis str. 168
are used as the query genome, respectively, we have observed that the value of MaxSize affects the
clustering result more significantly than the initial value of α. In this study, the initial value of α is
set to be 0, which means that the connection between gi and gj will be immediately cut out at the
beginning of the clustering process if either S(gi, gj) < µi or S(gi, gj) < µj .

3 Experiments and Discussion

3.1 Functional Modules at Different Resolution Levels

To see how the value of MaxSize affects the clustering results, we consider those predicted functional
modules that have at least three genes. Figure 2 shows the number of such modules, the number
of covered genes, and the average number of genes per module as functions of MaxSize for both
Escherichia coli K12 and Bacillus subtilis subsp. subtilis str. 168. Observe from the figure that for
both genomes the number of predicted functional modules and the number of covered genes become
relatively stable starting from MaxSize = 130. Therefore, in the following detailed study of the
predicted functional modules, we choose MaxSize = 130 for both genomes.

Figure 2: Escherichia coli K12 (left) and Bacillus subtilis subsp. subtilis str. 168 (right). From top to
bottom, the number of predicted functional modules, the number of covered genes, and the average
number of genes per module as functions of MaxSize (horizontal axis).

3.2 Evaluation of Prediction Results by Using the GO Information

With MaxSize being set at 130, we have obtained 167 functional modules covering 813 genes for
Escherichia coli K12, and 138 functional modules covering 731 genes for Bacillus subtilis subsp. subtilis
str. 168, where each functional module has at least two genes in. These modules are summarized in
Supplementary Tables 2 and 3, respectively.

To evaluate our prediction results, we have applied the GO information. The three gene ontologies
— molecular function, biological process, and cellular component — describe the attributes of gene
products from different perspectives, where molecular function defines what a gene product does at



Prediction of Functional Modules Based on Gene Distributions 253

the biochemical level without specifying where or when the event actually occurs or its broader context,
biological process describes the contribution of a gene product to a biological objective, and cellular
component refers to where in the cell a gene product functions [19]. A directed acyclic graph can be
induced from each GO term V, wherein:

• at the root level is the term Gene Ontology, at the bottommost level is V itself, and in between
are the ancestor GO terms of V.

• the relationship between the child and parent terms is interpreted as that the child term is either
an instance or a component of the parent term, which means that the child term is always more
specific than its parent terms in describing the attributes of the gene product.

We use the same method as [23] to measure the similarity between GO terms and between genes.
Let V1 and V2 be the directed acyclic graphs of two GO terms, then their similarity, sGO(V1, V2), is
defined as:

sGO(V1, V2) ≡ max depth(node|node ∈ V1 ∩ V2),

where V1 ∩ V2 refers to the nodes common to both V1 and V2, and the depth of a node is defined as
the number of nodes along the longest path from the node to the root. Let V (g) be the collection of
all the GO terms assigned to the gene g, then the GO similarity sgene between two genes gi and gj is
defined as:

sgene(g1, g2) ≡ max
Vi∈V(gi),Vj∈V(gj)

sGO(Vi, Vj)

The above defined GO similarity is very similar to the information-content based semantic similarity
defined in [11] in that both definitions consider specificity of the common attributes of two genes. We
have used the GO annotations provided by the GO Annotation Project [1] for Escherichia coli K12
and Bacillus subtilis subsp. subtilis str. 168.

Let C ≡ {C1, C2, · · · , CM} be the collection of the predicted modules with Cm being a predicted
module and M being the number of predicted modules, where m = 1, 2, · · · ,M . For each Cm, we first
compute the GO similarity between any two genes that both belong to Cm so that there are totally
nm ≡ |Cm|(|Cm| − 1)/2 such GO similarity measures; we then compute the average (s̄gene

m ) of these
nm GO similarity measures. In this way, the collection C is associated with a collection of numbers
{s̄gene

1 , s̄gene
2 , · · · , s̄gene

M }, each of which is the average GO similarity within a predicted module. To
assess the statistical significance of {s̄gene

1 , s̄gene
2 , · · · , s̄gene

M } (as well as of {C1, C2, · · · , CM}), we first
estimate3 the means {mean1, mean2, · · · ,meanM} and standard deviations {std1, std2, · · · , stdM} of the
same measures (i.e., the average GO similarities within modules) for randomly generated functional
modules, and then compute the Z-score of {s̄gene

1 , s̄gene
2 , · · · , s̄gene

M } as:

Z-score =
1√
M

M∑

m=1

s̄gene
m −meanm

stdm

When {s̄gene
1 , s̄gene

2 , · · · , s̄gene
M } is for a collection of randomly generated functional modules, the Z-score

asymptotically follows a normal distribution [2]. Therefore, a high Z-score means that the collection
of the predicted functional modules {C1, C2, · · · , CM} is statistically significant. Table 1 summarizes
the Z-scores of {s̄gene

1 , s̄gene
2 , · · · , s̄gene

M } when different GOs are used for the GO similarity measures.
Observe from the table that the Z-scores corresponding to the biological process GO are the highest for
both Escherichia coli K12 and Bacillus subtilis subsp. subtilis str. 168. So, statistically speaking, the
genes that are predicted to belong to the same functional module share more commonality in terms of
biological process than in terms of molecular function or cellular component, which is clearly consistent
with our intention to capture genes working in the same biological processes.

31000 iterations have been run for the estimation. In each iteration, a collection of M functional modules are generated
by (1) first randomly choosing without replacement

∑M

m=1
|Cm| genes out of the pool, and (2) randomly clustering the

chosen genes into M clusters with the m-th cluster of size of Cm(m = 1, 2, · · · , M).
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Table 1: The Z-scores of {s̄gene
1 , s̄gene

2 , · · · , s̄gene
M }, which correspond to the predicted functional modules

{C1, C2, · · · , CM}, for both Escherichia coli K12 and Bacillus subtilis subsp. subtilis str. 168, when
different gene ontologies are used for the GO similarity measures.

Escherichia coli K12 Bacillus subtilis subsp. subtilis str. 168
Biological process 25.3277 27.0246
Molecular function 21.0444 16.2324
Cellular component 4.34677 2.74972

Also, Figure 3 shows the distribution of the biological process GO similarity among the genes that
are predicted to belong to the same functional module versus that among all genes, and Table 2
summarizes the mean and standard deviations of these distributions. Observe from the figure and
the table that (1) the distribution of the biological process GO similarity among the genes that are
predicted to belong to the same functional module is very different than the one among all genes,
and (2) a pair of genes with biological process GO similarity ≥ 4 is more likely to belong to the same
predicted functional module than not.

Figure 3: Escherichia coli K12 (left) and Bacillus subtilis subsp. subtilis str. 168 (right). The
distribution of the GO similarities among the genes that are predicted to belong to the same functional
module (modules, in red) versus the distribution of the GO similarities among all genes (background,
in blue).

Table 2: Means and standard deviations (SD) of the GO similarities among the genes that are predicted
to belong to the same functional module (module) and among all genes (background), for Escherichia
coli K12 and Bacillus subtilis subsp. subtilis str. 168.

Escherichia coli K12 Bacillus subtilis subsp. subtilis str. 168
Mean SD Mean SD

Background 2.8672 1.2899 2.7548 1.2492
Module 3.6105 2.0270 3.2692 1.8069

3.3 Functional Modules Mapped between Escherichia coli K12 and Bacillus subtilis
subsp. subtilis str. 168

Supplementary Tale 4 summarizes the 86 predicted modules that are common (i.e., including at least
one common gene) to both Escherichia coli K12 and Bacillus subtilis subsp. subtilis str. 168 when
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MaxSize is set at 130. Among them, there are 76 modules having at least two genes in common, and
28 modules having at least three genes in common. Since Escherichia coli K12 and Bacillus subtilis
subsp. subtilis str. 168 belong to different phylum (proteobacteria and firmicutes, respectively) of
bacteria, their commonality may represent (at least part of) the commonality within bacteria.

Among these common functional modules, there are 38 in Escherichia coli K12, and 35 in Bacillus
subtilis subsp. subtilis str. 168, each of which includes a subset of genes of a transcriptional unit. For
example, in Escherichia coli K12, all the five genes of a five-gene transcription unit cyoABCDE are
predicted to belong to the same functional module; and, in Bacillus subtilis subsp. subtilis str. 168, six
genes purEKCSQL of a twelve-gene transcription unit purEKBCSQLFMNHD are predicted to belong
to the same functional module [http://biocyc.org/]. This demonstrates, on one hand, that genes of
the same transcriptional unit tend to be together during evolution so that their co-transcription and
co-expression relationships are preserved; and, on the other hand, that genes of the same transcription
unit undergo re-arrangements during evolution so that not all of them are together all the time.

We have observed from Supplementary Table 4 that a functional module can consist of genes that
are not in the same transcription unit but are involved in the same biological process. For example,
in Escherichia coli K12, seven genes purKECMNDH, which are in four different transcription units
(purEK, purC, purMN, and purHD, respectively) but are all involved in the same pathway IMP
biosynthesis, are predicted to belong to the same functional module; and in Bacillus subtilis subsp.
subtilis str. 168, four genes, thiC-yjbV-thiEM, which belong to at least three different transcription
units but are all involved in the same pathway thiamine-PP biosynthesis, are predicted to belong to
the same functional module [http://biocyc.org/, http://www.ebi.uniprot.org/]. Particularly,
• [Supplementary Table 5] We have predicted 53 genes of Escherichia coli K12 that belong to at
least five different transcription units into one functional module; and predict 33 genes of Bacillus
subtilis subsp. subtilis str. 168 that belong to at least three different transcription units into one
functional module. These two modules of the two genomes share 33 common genes that encode
ribosomal proteins, elongation factors, secretory proteins, adenylate kinase4, and RNA polymerases,
respectively. This indicates that these two functional modules are related to the process of DNA-
transcription and translation in both genomes. Interestingly, 19 genes of Escherichia coli K12 that
seem to be less relevant to DNA-transcription and translation based on their NCBI annotations are
also included in this functional module. We have found the following evidence to support the inclusions
of infA-lysSU-hlsR-ispFD-rsmC into this functional module.

a. infA encodes the translation initiation factor IF-1.

b. lysS is in an operon (prfB-lysS) that encodes the peptide-chain-release factor 2 [6]; and, lysS
and lysU are the two lysyl-tRNA ligases, where lysS is expressed constitutively and lysU is heat
inducible [9].

c. The protein that hlsR encodes interacts with 15 proteins encoded by rplIMNSV-rpmB-rpsBCEGJ-
sbcC-yagG-ycfS-ydhA, respectively [http://www.ebi.uniprot.org/], where rplNV and rpsCEGJ,
encoding ribosomal proteins, are already included in this functional module.

d. The protein encoded by ispF interacts with three proteins encoded by flgD, hldD and rpsJ,
respectively [http://www.ebi.uniprot.org/], where rpsJ is already included in this functional
module; and, the proteins encodes by ispD and ispF catalyze step 2 and 4 of the process
isopentenyl-PP from 1-deoxy-D-xylulose 5-phosphate, respectively.

e. rsmC encodes the ribosomal RNA small subunit methyltransferase. Also, we have found the
following evidence to support the prediction that trpABCDE, cysKE and pabAB are clustered
into the same functional module.

4The protein that adk encodes, adenylate kinase, interacts with two other proteins encoded by rpoC and ybdL,
respectively, where rpoC, encoding the RNA polymerase beta subunit, is involved in the transcription process. This
justifies why adk is included into this functional module in both genomes.
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f. trpABCDE and cysKE are involved in the biosynthesis of two particular amino-acids, tryptophan
and cystine, respectively; additionally, cysK is homologous to trpB in several genomes citebib21.

g. The pathway tryptophan biosynthesis of which trpABCDE are part and the pathway tetrahy-
drofolate biosynthesis of which pabAB are part both start with chorismate. Particularly, the
process of anthranilate from chorismate is catalyzed by trpDE in Escherichia coli K12, and by
pabA-trpE in Bacillus subtilis subsp. subtilis str. 168 [http://www.ebi.uniprot.org/].

• [Supplementary Table 6] We have predicted 23 genes of Escherichia coli K12 that belong to at least
four different transcription units into one functional module, and predicted 27 genes of Bacillus subtilis
subsp. subtilis str. 168 that belong to at least six different transcription units into one functional
module. These two modules of the two genomes share 21 common genes that encode 17 flagellar-
related proteins, and four chemotaxis-related proteins. Among the other eight genes that are unique
to either Escherichia coli K12 or Bacillus subtilis subsp. subtilis str. 168, at least seven also encode
flagellar- or chemotaxis-related proteins. The prediction that the flagellar- and chemotaxis-related
genes are in the same functional module can be supported by the works of [4, 15].

a. the chemotaxis-related proteins, which are capable of detecting the changes in the concentration
of attractants and repellents, regulate the movement of a cell.

b. the movement of a cell is accomplished through flagellar rotations.

• [Supplementary Table 7] We have predicted 14 genes of Escherichia coli K12 that belong to at
least three different transcription units into one functional module, and predicted 14 genes of Bacillus
subtilis subsp. subtilis str. 168 that belong to at least four different transcription units into one
functional module. Eleven of the 12 common genes, and the two remaining genes that are unique to
either Escherichia coli K12 or Bacillus subtilis subsp. subtilis str. 168, are all known to be related to
the formation of the cell envelope and cell division. So, it is interesting to investigate the roles of the
other uncharacterized genes, yfiH-yggS of Escherichia coli K12 and ylmE-ylmG of Bacillus subtilis
subsp. subtilis str. 168, in the same biological process.

As we have mentioned earlier, different values of MaxSize correspond to viewing the functional
modules at different resolution levels. The reason that we choose MaxSize = 130 for our detailed
analysis is that for this particular choice some quantitative measures (i.e., the number of predicted
modules, the number of covered genes, and the average number of genes per functional module) are
relatively stable for both genomes. As demonstrated by the following example, this criterion is not
necessarily universally true or biologically motivated.
• [Supplementary Table 8] When MaxSize is set at 130, we have predicted 92 genes of Escherichia
coli K12 that belong to more than ten different transcription units into one functional module, and
predicted 127 genes of Bacillus subtilis subsp. subtilis str. 168 that belong to more than 16 tran-
scription units into one functional module. These two functional modules in the two genomes share
37 common genes. However, even these common genes are involved in so diverse biological processes,
which might indicate that both predicted modules may not have common biological goals. When
MaxSize is set at 10 (which corresponds to viewing the functional relatedness among genes at a much
finer resolution level), 49 of these 92 Escherichia coli K12 genes are predicted to belong to 15 different
functional modules; 95 of these 127 Bacillus subtilis subsp. subtilis str. 168 genes are predicted to
belong to 30 different functional modules; and all the other genes become isolated. Among these func-
tional modules predicted at MaxSiz = 10, there are 11 common to both genomes, which are related
to zinc/manganese transportation, arginine biosynthesis, oligopeptide transportation, molybdate trans-
portation, dTDP-rhamnose biosynthesis, glycogen biosynthesis/degradation, phosphate transportation,
glycine cleavage, sn-glycerol 3-phosphate transportation, and ribose transportation, respectively. It
will be interesting to investigate the functional relatedness among these smaller-sized modules (e.g.,
predicted at MaxSize = 10) to unveil the unified biological goals of the larger-sized modules (e.g.,
predicted at MaxSize = 130).
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As we have understood about the biological machinery of microbial genomes, the functional mod-
ules are organized in a hierarchical way. At the root level is the single module consisting of all the
genes in the query genome; and at the leaf level are the modules each of which consists of only one
gene. Biological processes of different degrees of complexity may involve different numbers of genes;
hence, their corresponding functional modules may be of different sizes. This may suggest that using a
uniform value of MaxSize is not appropriate for all biological processes, and some biological meaningful
guidance should be used during the clustering.

4 Conclusions

In this paper we have developed a computational method for the prediction of functional modules in
microbial genomes. Since our proposed method is purely computational, it can be directly applied
to the newly sequenced microbial genomes to predict gene functions and/or the component genes
of biological pathways. These predictions could possibly be used to guide experimental designs for
investigating particular biological processes.

We have first quantified the functional relatedness among genes based on their distributions across
multiple microbial genomes, and have then applied a threshold-based clustering algorithm to obtain
modules from the gene network in which every pair of genes is associated with a score representing
their functional relatedness. We have used GO information to assess the prediction results, and have
looked into the predicted functional modules that are common to both Escherichia coli K12 and
Bacillus subtilis subsp. subtilis str. 168.

Because our method predicts functional relatedness among genes based on their distributions across
multiple microbial genomes, it heavily depends on the accuracy of the detection of orthologous genes.
The BDBH method, which has been used in our study and performs well for most cases, may still fail
for both phylogenetically very close and very distant genomes. For phylogenetically very close genomes,
it is possible that the true orthologous genes are missed due to small and insignificant differences in
sequence alignment scores among paralogous genes. For phylogenetically very distant genomes, it is
possible that the false orthologous genes are predicted due to the (relatively low) similarity between
genes that contain similar domains. We have found a number of cases where a functional module is
formed due to the inclusion of paralogous genes (e.g., trpABCDE and cysKE are clustered together
due to the paralogy between trpB and cysK [Supplementary Table 5]). So, in our future study, we
plan to assess the functional relatedness of any two genes based on their COG annotations [18]. In
this way, the sensitivity level for the detection of orthologous genes is increased (because most of time
orthologous genes belong to the same COG) at the price that the specificity level is decreased (because
each COG also contains in-paralogous genes). However, an extra bonus of using COG is that it is
possible to predict “universal” functional modules that can be mapped to all microbial genomes.

Clustering is also a key step during the prediction of functional modules. The clustering algorithm
used in our study, though simple and effective, may lack in a mathematical and biological basis. We
plan to use the known modules (e.g., pathways) to guide the clustering in our future study.
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